URBANIZATION AND LAND USE/COVER CHANGES IN SABON-TASHA AREA OF KADUNA METROPOLIS BETWEEN 2005 AND 2016

Ibrahim Abdulrashid Ibrahim Abdulrashid

Abstract


Rapid urbanization in rapidly growing cities of developing countries exert indelible imprints on the land surface. These changes in land use /land cover in most cases tend to account for adverse environmental consequences. This study was conducted in Sabon-Tasha area of Metropolitan Kaduna to monitor the LULC changes that results from urbanization. Two (2) sets of Landsat images of 2005 and 2016 were obtain from National Remote Sensing Centre Abuja (NASRDA), was used to generate past and current LULC pattern in the study area. Object based classification technique and change detection was used. The study shows that the built-up area has increased significantly and added 256.51 km2 (% change of 221.28) from 2005 - 2016. Increase in built-up area may be attributed to decrease in Vegetation and Bare-land land class. The expansion of built-up area is mostly along major transportation corridors. The 2000 and ethno-religious, conflict on Sharia law and the 2002, Miss World riots are among other factors that precipitrated spurious growth in this area. All these LULC changes, indicates the rapid rate of population and urbanization growth in the Sabon-Tasha area” of Kaduna Metropolis. The Kaduna Town Planning should consider these landuse/landcover patterns and trends in their urban planning and management for sustainable city growth.


Full Text:

PDF

References


Adzandeh, E. A., Akintunde, J. A., & Akintunde E A. (2015). Analysis of Urban Growth Agents in Jos Metropolis, Nigeria and Remote Sensing Regional Centre for Training in Aerospace Surveys. International Journal of Remote Sensing and GIS.

Al-Bilbisi, H. (2019). Spatial monitoring of urban expansion using satellite remote sensing images: A case study of Amman City, Jordan. Sustainability (Switzerland), 11(8).

https://doi.org/10.3390/su11082260

Alnsour, J. A. (2016). Managing urban growth in the city of Amman, Jordan. Cities, 50, 93–99. https://doi.org/10.1016/j.cities.2015.08.011

Aydinoglu, A. C., & Gungor, O. (2010). A Novel Land Cover/Use Data Model for GIS and Remote Sensing Applications in Turkey. Italian Journal of Remote Sensing. https://doi.org/10.5721/itjrs20104223

Bansal, N., Shrivastava, V., & Singh, J. (2015). Smart Urbanization – Key to Sustainable Cities. Real Corp 2015.

Barange, M., & Perry, R. I. (2009). Physical and ecological impacts of climate change relevant to marine and inland capture fisheries and aquaculture. In In: {Climate} {Change} {Implications} for {Fisheries} and {Aquaculture}: {Overview} of {Current} {Scientific}

{Knowledge} (pp. 7–106). Retrieved from http://www.fao.org/docrep/012/i0994e/i0994e00.htm

B.M. Shock, G.A. Carpenter, S. Gopal, & and C.E. Woodcock. (2013). ARTMAP Neural Network Classification of Land Use Change. https://doi.org/10.13031/2013.8307

Broncano-Mateos, C. J., Pinilla, C., Gonzalez-Crespo, R., & Castillo-Sanz, A. (2010). Relative Radiometric Normalization of Multitemporal images. International Journal of Interactive Multimedia and Artificial Intelligence, 1(3), 53. https://doi.org/10.9781/ijimai.2010.139

Bununu, Y. A., Ludin, A. N. M., & Hosni, N. (2015). City profile: Kaduna. Cities, 49, 53–65. https://doi.org/10.1016/j.cities.2015.07.004

Chang, K. T., Yu, F. C., Chang, Y., Hwang, J. T., Liu, J. K., Hsu, W. C., & Shih, P. T. Y. (2015). Land cover classification accuracy assessment using full-waveform LiDAR data. Terrestrial, Atmospheric and Oceanic Sciences, 29(2), 169–181. https://doi.org/10.3319/TAO.2014.12.02.02(EOSI)

Cheruto MC, Kauti MK, Kisangau PD, K. P. (2016). Assessment of Land Use and Land Cover Change Using GIS and Remote Sensing. Journal of Remote Sensing & GIS, 5(4), 1–6.

https://doi.org/10.4175/2469-4134.1000175 Coulter, L. L., Stow, D. A., Tsai, Y. H.,

Ibanez, N., Shih, H. chien, Kerr, A., … Mensah, F. (2016). Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery. Remote Sensing of Environment,

, 396–409. https://doi.org/10.1016/j.rse.2016.07.016

Dadashpoor, H., Azizi, P., & Moghadasi, M. (2019). Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of the Total Environment, 655, 707– 719. https://doi.org/10.1016/j.scitotenv.2018.11.267

Deal, B., Pan, H., & Zhuang, Y. (2018). Modeling Land-Use Change in Complex Urban Environments. In Comprehensive Geographic Information Systems (pp. 401–423). https://doi.org/10.1016/b978-0-12-409548-9.09653-6

Deilami, B. R., Ahmad, B. Bin, Saffar, M. R. A., & Umar, H. Z. (2015). Review of change detection techniques from remotely sensed images. Research Journal of Applied

Sciences, Engineering and Technology, 10(2), 221–229.

https://doi.org/10.19026/rjaset.10.2575 Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., … Raska, R. (2018).

DeepGlobe 2018: A challenge to parse the earth through satellite images. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. https://doi.org/10.1109/CVPRW.2018.00031

Denli, H. H., & Onursal Denli, G. (2017). The effect of deforestation on global changing and its consequences in Turkey. 38th Asian Conference on Remote Sensing - Space Applications: Touching Human Lives, ACRS 2017.

Du, P., Liu, P., Xia, J., Feng, L., Liu, S., Tan, K., & Cheng, L. (2014). Remote sensing image interpretation for urban environment analysis: Methods, system and examples. Remote Sensing. https://doi.org/10.3390/rs6109458

Ellis, J. I., Ellis, J. I., Clark, M. R., Lamarche, G., Rouse, H. L., & Lamarche, G. (2017).

Environmental management frameworks for offshore mining: the New Zealand approach. Marine Policy. https://doi.org/10.1016/j.marpol.2017.07.004

Farooq, M., & Muslim, M. (2014). Dynamics and forecasting of population growth and urban expansion in Srinagar city - a geospatial approach. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives.

https://doi.org/10.5194/isprsarchives-XL-8-709-2014

Franklin, S. E., Ahmed, O. S., Wulder, M. A., White, J. C., Hermosilla, T., & Coops, N. C. (2015). Large Area Mapping of Annual Land Cover Dynamics Using Multitemporal Change Detection and Classification of Landsat Time Series Data. Canadian Journal of Remote Sensing, 41(4), 293–314. https://doi.org/10.1080/07038992.2015.1089401

Han, Q., Niu, Z., Wu, M., & Wang, J. (2019). Remote-sensing monitoring and analysis of China intertidal zone changes based on tidal correction. Kexue Tongbao/Chinese Science Bulletin. https://doi.org/10.1360/N972018-00723

Hersperger, A. M., Oliveira, E., Pagliarin, S., Palka, G., Verburg, P., Bolliger, J., & Grădinaru, S. (2018). Urban land-use change: The role of strategic spatial planning. Global Environmental Change, 51, 32–42. https://doi.org/10.1016/j.gloenvcha.2018.05.001

Journal, I., & Scientific, O. F. (2015). The Growth Of Kaduna Metropolis Between 1973 And 2012 The Physical Planning Implications. International Journal of Scientific & Technology Research, 4(8), 7–13.

Kim, B., Han, Y., Kim, Y., & Kim, Y. (2013). Generation of cloud-free imagery using Landsat8. 34th Asian Conference on Remote Sensing 2013, ACRS 2013, 2, 1434–1440.

Kozlowski, G., Rion, S., Python, A., & Riedo, S. (2009). Global consequences of land use. Biodiversity and Conservation. https://doi.org/10.1080/00378941.1864.10827375

Lamine, S., Petropoulos, G. P., Singh, S. K., Szabó, S., Bachari, N. E. I., Srivastava, P. K., & Suman, S. (2018). Quantifying land use/land cover spatio-temporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS®. Geocarto International, 33(8), 862–878. https://doi.org/10.1080/10106049.2017.1307460

Li, D., Lu, D., Li, N., Wu, M., & Shao, X. (2019). Quantifying annual land-cover change and vegetation greenness variation in a coastal ecosystem using dense time-series Landsat data. GIScience and Remote Sensing, 56(5), 769–793. https://doi.org/10.1080/15481603.2019.1565104

Liu, L. (2018). A sustainability index with attention to environmental justice for eco-city classification and assessment. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2017.11.038

Liu, M., Cao, X., Li, Y., Chen, J., & Chen, X. H. (2016). Method for land cover classification accuracy assessment considering edges. Science China Earth Sciences, 59(12), 2318– 2327. https://doi.org/10.1007/s11430-016-5333-5

Locher-Krause, K. E., Volk, M., Waske, B., Thonfeld, F., & Lautenbach, S. (2017). Expanding temporal resolution in landscape transformations: Insights from a landsat-based case study in Southern Chile. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2016.12.036

NCRS (2019) Jos, satellite data of 2005and 2016. National Space Research and Development

Agency (NASRDA), Abuja. Federal Ministry of Science and Technology, Nigeria.

Meaton, J., & Alnsour, J. (2012). Spatial and Environmental Planning Challenges in Amman,

Jordan. Planning Practice and Research, 27(3), 367–386. https://doi.org/10.1080/02697459.2012.673321

Mozhgan Ahmadi Nadoushan, I., Alebrahim, A., Soffianian, A., & Radnezhad, H. (2014). Land use/cover change detection using remotely sensed imagery in. International Journal of Advanced Biological Science and Engineering, 1(2), 120–133.

Mubea, K. W., Ngigi, T. G., & Mundia, C. N. (2010). Assessing application of markov chain analysis in predicting land cover change: a case study of Nakuru municipality. Journal of Agriculture, Science and Technology.

Paloscia, S., Pampaloni, P., & Santi, E. (2018). Radiometric microwave indices for Remote Sensing of land surfaces. Remote Sensing, Vol. 10. https://doi.org/10.3390/rs10121859

Pradhan, B., Al-sharif, A. A. A., & Abdullahi, S. (2017). Spatial land use change modeling techniques. In Spatial Modeling and Assessment of Urban Form: Analysis of Urban Growth: From Sprawl to Compact Using Geospatial Data (pp. 171–185). https://doi.org/10.1007/978-3-319-54217-1_8

Ross, S., & Bhadauria, H. S. (2015). A Review of Change Detection Techniques of LandCover Using Remote Sensing Data. IOSR Journal of Computer Engineering Ver. IV, 17(3), 2278–2661. https://doi.org/10.9790/0661-17341721

Sanem, O. zen T., Ali, İ. K., & Alkan, G. nluuml. (2010). Spatial and temporal dynamics of land use pattern response to urbanization in Kastamonu. African Journal of Biotechnology, 9(5), 640–647. https://doi.org/10.5897/ajb09.1478

Schmitt, A., Brisco, B., Kaya, S., Roth, A., & Mueller, A. (2011). Wetland monitoring with polarimetric SAR change detection methods. 34th International Symposium on Remote Sensing of Environment - The GEOSS Era: Towards Operational Environmental Monitoring.

Schneider, A. (2012). Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2012.06.006

Secker, J., Gong, S., Parsons, G., & Schlingmeier, D. (2013). Detection and characterization of small vehicles using RADARSAT-2 spotlight mode data. Canadian Journal of Remote Sensing. https://doi.org/10.5589/m13-043

Sheng Wu, B., & Sui, D. (2016). Modeling impacts of globalization on desakota regions: a case study of Taipei Metropolitan Area. Environment and Planning B: Planning and Design,

(2), 320–340. https://doi.org/10.1177/0265813515605216

Sonawane, K., & Bhagat, V. (2016). Improved Change Detection of Forests Using Landsat TM and ETM data. Remote Sensing of Land, 1(1), 18–40. https://doi.org/10.21523/gcj1.17010102

Tilahun, A. (2015). Accuracy Assessment of Land Use Land Cover Classification using Google Earth. American Journal of Environmental Protection, 4(4), 193. https://doi.org/10.11648/j.ajep.20150404.14

Townshend, J. (2001). Landsat Imagery in Geography. In International Encyclopedia of the Social & Behavioral Sciences (pp. 8265–8270). https://doi.org/10.1016/b0-08-0430767/02527-4

Tripathi, S., Naik, P. A., Swapna Patil, M., & Student, M. E. (2015). Analysis of change detection techniques using remotely sensed data. International Journal of Engineering Development and Research (Www.Ijedr.Org), 3(3), 1.

United Nations Department of Economic and Social Affairs. (2014). World Urbanization

Prospects The 2014 Revision. Demographic Research. https://doi.org/(ST/ESA/SER.A/366)

Usman, M., Liedl, R., Shahid, M. A., & Abbas, A. (2015). Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. Journal of Geographical Sciences, 25(12), 1479–1506. https://doi.org/10.1007/s11442-015-1247-y van Stigt, R., Driessen, P. P. J., & Spit, T. J. M. (2013). A window on urban sustainability.

Integration of environmental interests in urban planning through “decision windows.” Environmental Impact Assessment Review. https://doi.org/10.1016/j.eiar.2013.04.002

Wapwera, S. D., & Gajere, J. K. (2017). Ethnoreligious Urban Violence and Residential Mobility in Nigerian Cities: The Kaduna Experience. Urban Studies Research. https://doi.org/10.1155/2017/4624768

Woodcock, C. E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., …

Wynne, R. (2008). Free Access to Landsat Imagery. Science. https://doi.org/10.1126/science.320.5879.1011a

Xi, Y., Thinh, N. X., & Li, C. (2018). Spatio-temporal variation analysis of landscape pattern response to land use change from 1985 to 2015 in Xuzhou City, China. Sustainability

(Switzerland), 10(11). https://doi.org/10.3390/su10114287

Xu, E. G. B., Leung, K. M. Y., Morton, B., & Lee, J. H. W. (2015). An integrated environmental risk assessment and management framework for enhancing the sustainability of marine protected areas: The Cape d’Aguilar Marine Reserve case study in Hong Kong. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2014.09.088

Xu, Q., Hou, Z., & Tokola, T. (2012). Relative radiometric correction of multi-temporal ALOS AVNIR-2 data for the estimation of forest attributes. ISPRS Journal of Photogrammetry and Remote Sensing, 68(1), 69–78. https://doi.org/10.1016/j.isprsjprs.2011.12.008

Yáñez, E., Lagos, N. A., Norambuena, R., Silva, C., Letelier, J., Muck, K.-P., … Böhm, G.

(2017). Impacts of Climate Change on Marine Fisheries and Aquaculture in Chile. In Climate Change Impacts on Fisheries and Aquaculture (pp. 239–332). https://doi.org/10.1002/9781119154051.ch10

Yu, L. S., Fu, Y. F., Yu, H. Y., & Li, Z. Q. (2011). Landscape pattern gradient dynamics and desakota features in rapid urbanization area: A case study in Panyu of Guangzhou. Chinese Journal of Applied Ecology, 22(1), 171–180.

Yu, X., Zhan, F. B., Hu, J., & Zou, Q. (2010). Radiometric normalization for multitemporal and multispectral high resolution satellite images using ordinal conversion. 2010 18th International Conference on Geoinformatics, Geoinformatics 2010.

https://doi.org/10.1109/GEOINFORMATICS.2010.5568027

Yunusa, M. B. (2015). Physical planning and the development of Dankande Rest Stop Area in

Kaduna, Nigeria. City, Culture and Society, 6(1), 53–61.

https://doi.org/10.1016/j.ccs.2015.01.002

Zhao, Z., Meng, Y., Yue, A., Huang, Q., Kong, Y., Yuan, Y., … Zhang, M. (2016). Review of remotely sensed time series data for change detection. Yaogan Xuebao/Journal of Remote Sensing, Vol. 20, pp. 1110–1125. https://doi.org/10.11834/jrs.20166170

Zhou, G., Li, C., Yue, T., Jiang, L., Liu, N., Sun, Y., & Li, M. (2015). An overview of in-orbit radiometric calibration of typical satellite sensors. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(7W4), 235–240. https://doi.org/10.5194/isprsarchives-XL-7-W4-235-2015


Refbacks

  • There are currently no refbacks.