THERMAL AND VELOCITY SLIP EFFECTS ON HEAT AND MASS TRANSFER OF A HYDROMAGNETIC MAXWELL FLUID FLOW OVER A STRETCHING SHEET

1Baoku, I.G. and 2Onifade, Y. S.

1Department of Mathematical Sciences, Federal University, Dutsin-Ma, Katsina State, Nigeria.
2Department of Physics, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria.

Corresponding Author E-mail: ibaoku@fudutsinma.edu.ng

ABSTRACT

In the present study, the effects of thermal and velocity slip on steady boundary layer magnetohydrodynamic flow, heat and mass transfer of an incompressible upper convected Maxwell fluid over a permeable stretching sheet are analyzed. Similarity transformation technique is adopted to obtain the self-similar coupled nonlinear ordinary differential equations and then the self-similar equations are solved numerically using Runge-Kutta-Fehlberg integration technique with shooting method. The velocity and temperature fields are enhanced by increasing values of velocity and thermal slip parameters respectively. The wall shear stress, rates of heat and mass transfer are enhanced by the increments in the values of thermal and velocity slip parameters. The presence of thermal and velocity slip on the flow fields is found to be of great significance to the investigation.

Keywords: Velocity slip, Thermal slip, Maxwell fluid, Hydromagnetic flow, Heat and mass transfer, Stretching sheet.

INTRODUCTION

Mechanics of non-Newtonian fluids has emerged as one of the most important research areas of modern Applied Mathematics. Many biological and industrial fluids have elastic characteristics which cannot be ignored because most of them are suspensions of particles in the viscous liquid with short memory. As a result of this, almost all biological and industrial fluids are non-Newtonian for which the Navier-Stokes equations are inadequate. Such fluids are found to exhibit a non-linear stress strain relation and thus the resulting differential systems of equations are highly nonlinear. Keeping these challenges in view, many investigators have engaged in obtaining solutions for flow, heat and mass transfer of non-Newtonian fluid with different geometries. For these, one may refer to the studies of Sarpakaya (1961), Soundalgekar (1974), Gupta and Sridhar (1985), Anderson (1992), Eldabe-Nabil and Mohammed-Mona (2002), Vajravelu and Rollins (2004), Khan and Sanjayanand (2005), Sanjayanand and Khan (2006), Abel and Mahesha (2008), Prasad et al. (2010), Olajuwon and Baoku (2014), Baoku and Olajuwon (2014), Baoku (2014), Baoku et al. (2015), Koriko et al. (2016), Popoola et al. (2016) and Rahbari et al. (2018).

Generally, non-Newtonian fluids are categorized into three types, namely; the differential, rate and integral types. The simplest class of rate type fluid is known as Maxwell fluid. Maxwell fluid model is important especially to viscoelastic problems having small dimensionless relaxation time. The problems of hydrodynamic Sakiadís flow of an upper-convected Maxwell (UCM) fluid over a rigid plate moving steadily in a quiescent fluid was investigated by Sadeghy et al. (2005). They employed perturbation method and two numerical schemes, namely; the Runge-Kutta and finite difference methods for the solution to the problem. Hayat and Sajid (2006) extended the work of Sadeghy et al. (2005) to magnetohydrodynamic flow for the totally analytic solution of the problem. Fetecau and Fetecau (2003a,b,c) examined the problems of Maxwell fluids past an infinite plate; on the Rayleigh-Stokes problems; and on decay of a potential vortex respectively. Zierep and Fetecau (2007) further studied the Rayleigh-Stokes problem of a Maxwell fluid for three different types of initial and/or boundary conditions. Hayat et al. (2008) also discussed the magnetohydrodynamic (MHD) flow and mass transfer of upper-convected Maxwell fluid past a porous shrinking sheet in the presence of chemically reactive species. Hayat and Qasim (2010) further provided solutions to the flow and mass transfer characteristics in a Maxwell fluid past a stretching sheet with Ohmic dissipation, thermal radiation and thermophoresis. Wang and Tan (2008) addressed the
stability analysis of double-diffusive convection of a Maxwell fluid in a porous medium. Recently, Ishak et al. (2015) examined the effect of magnetohydrodynamic flow and heat transfer of the upper-convected Maxwell fluid over a stretching/shrinking sheet with prescribed heat flux. They obtained numerical solution for their problem. Mustapha et al. (2015) also addressed a steady flow of Maxwell nanofluid induced by an exponentially stretching sheet subject to convective heating. Numerical solutions were obtained for the emerging non-linear boundary value problem using MATLAB built-in function bvp4c. They concluded that velocity decreases and temperature increases when the local Deborah number is increased. Hayat et al. (2015) investigated the convective heat and mass transfer of a three-dimensional flow of Maxwell fluid over a stretching surface with heat source. Concentration and thermal buoyancy effects were accounted for and concentration boundary layer thicknesses were found to be decreasing functions of stretching ratio. Omowaye and Animasaun (2016) analyzed the upper convected Maxwell fluid flow in variable thermophysical properties over a melting surface situated in hot environment subject to thermal stratification. They concluded that an increase in stratification parameter corresponds to decrease in the heat energy entering into the fluid domain from free stream and this significantly reduces the overall temperature and temperature gradient of UCM fluid as it flows over a melting surface. Adegbie et al. (2015) presented the dynamics of an upper-convected Maxwell fluid flow with heat and mass transfer over a melting surface. They accounted for the influence of melting heat transfer, thermal and solution stratification in their work using the classical Runge-Kutta method with shooting technique. Mushtaq et al. (2014) took into account the influence of thermal radiation of the laminar two-dimensional incompressible stagnation point flow of an upper-convected Maxwell fluid over a stretching sheet. They investigated an entirely different aspect of Rosseland approximation for thermal radiation. Shateyi et al. (2015) explored spectral relaxation method to investigate the entropy generation on a flow and heat transfer of a Maxwell fluid. Pop et al. (2012) analyzed the MHD flow and heat transfer of an upper-convected Maxwell fluid over a stretching surface with variable thermophysical properties. Koriko et al. (2016) examined the boundary layer of an upper-convected Maxwell fluid flow with variable thermal-physical properties over a melting thermally stratified surface. They employed the classical Runge-Kutta method with shooting technique to find that the transverse velocity, longitudinal velocity and temperature of the UCM fluid were increasing functions of temperature-dependent viscous and thermal conductivity parameters. Literature survey reveals that little attention has been paid to the slip flow, heat and mass transfer of non-Newtonian fluids especially Maxwell fluid. Fluid patterns characterized by the slip boundary conditions have special significances in many applications. In some instances, the fluids present a loss of adhesion at the wetted wall which compels it to slide along the wall. Consideration for no slip condition seems unrealistic for many non-Newtonian flows because they exhibit macroscopic wall slip. Particularly, no-slip condition is inadequate for rough surfaces and in micro electromechanical system (MEMS). The fluid which exhibits boundary slip finds applications in technology such as in the polishing of artificial heart and internal cavities in a variety of manufactured parts is achieved by imbedding such as fluids as abrasive [Sajid et al. (2008)].

In all the aforementioned investigations, the effects of slip conditions have not been taken into account for Maxwell fluids. Such effects are very important for non-Newtonian viscoelastic Maxwell fluid like polymer melts which exhibit wall slip. Hayat et al. (2010) studied the slip effects on the magnetohydrodynamic peristaltic flow of a Maxwell fluid in a planar channel saturated with porous medium. Vieru and Zafar (2013) discussed the Couette flows of a Maxwell fluid produced by the motion of a flat plate. They analyzed the flow with the assumption that the relative velocity between the fluid at the wall and the wall is proportional to the shear rate at the wall under the slip condition at boundaries. They obtained velocity fields corresponding to both slip and non slip conditions for Maxwell and Newtonian fluids. The slip flow rate of a non-Newtonian Maxwell fluid past a stretching sheet was investigated by Sajid et al. (2014). Liu and Guo (2017) recently examined the magnetohydrodynamic flow of a generalized Maxwell fluid induced by a moving plate where the second-order slip between the wall and the fluid was considered. They concluded that the velocity corresponding to flows with slip condition is lower than for flow with nonslip conditions, and the velocity with second-order slip condition is lower than that with first-order slip condition. In this work, the steady laminar magnetohydrodynamic flow with velocity slip, mass and heat transfer with thermal slip in a Maxwell fluid over a porous stretching sheet is examined. To the best of the authors’ knowledge, the detailed survey of literature shows that no attention has given to the combined effects of thermal and velocity slip on hydromagnetic flow of viscoelastic Maxwell fluid, heat and mass transfer over a permeable stretching surface. The mathematical model is proposed in the form of partial differential
The coordinate system $x - \infty$, $y - \infty$, $\rho - \nu$, $\kappa - \sigma$, B_0, ρ, C_p, κ and D_m are coordinate axes along the continuous surface in the direction of motion and normal to it, velocity components in the directions of x and y axes, fluid temperature inside the boundary layer. The boundary conditions for the problem are:

\[
\begin{align*}
 u &= u_w + M \left(\frac{\partial u}{\partial y} \right), \\
 v &= V_w, \\
 T &= T_w + N \frac{\partial T}{\partial y}, \\
 C &= C_w \quad \text{at} \quad y = 0 \\
 u \to U_\infty &= 0, \\
 T \to T_\infty, \\
 C \to C_\infty
\end{align*}
\]

\[C = C_w \quad \text{as} \quad y \to \infty \]

The stretching velocity of the sheet is $u_w = bx$ with b being a constant. Let the wall constant mass transfer be V_w with $V_w > 0$ for injection and $V_w < 0$ for suction where V_w will be determined later. The flow is presumed to be generated by stretching sheet issuing from a thin slit at the origin. The sheet is then stretched in such a way that the speed at any point on the sheet becomes proportional to the distance from the origin. The respective free stream temperature and species concentration are T_∞ and C_∞. The coordinate system $x - \infty$ is along the stretching sheet while $y - \infty$ is normal to the sheet. The flow is subjected to a transverse and uniform magnetic field of strength B_0, which is applied in the positive y-direction, normal to the surface. The induced magnetic field is assumed to be very small in comparison to the applied magnetic field. The chemical reaction is also presumed to occur over the surface but not in the fluid. Based on these assumptions and following Sadeghy et al. (2005) and Hayat and Sajid (2007), the governing equations of the conservation of mass, momentum, energy and species concentration, using an order magnitude analysis of the y-direction momentum equation (normal to the sheet) and the usual boundary layer assumptions with negligible pressure gradient where other thermophysical properties are kept as constants in the presence of magnetic field, past a stretching sheet can be expressed as follows:

\[
\begin{align*}
 \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0 \\
 u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} &= \nu \frac{\partial^2 u}{\partial y^2} - \frac{\sigma B_0^2 u}{\rho} - k_0 \left[v^2 \frac{\partial^2 u}{\partial y^2} + 2 \nu v \frac{\partial^2 u}{\partial x \partial y} + u^2 \frac{\partial^2 u}{\partial x^2} \right] = 0
\end{align*}
\]

\[
\rho C_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \kappa \frac{\partial^2 T}{\partial y^2}
\]

\[
u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_m \frac{\partial^2 C}{\partial y^2}
\]
where \(u_w = bx, \quad T = T_w + d \left(\frac{x}{l} \right)^2 \), \(l, \quad d, \quad M \) and \(N \) are the reference length of the sheet, a constant, velocity and thermal slip factors respectively. It should be noted that \(M = N = 0 \) corresponds to no-slip condition. The above boundary condition is valid when \(x \ll l \) which occurs very near to the slit. Introducing the following dimensionless quantities, the mathematical analysis of the problem is simplified by using the following similarity transforms:

\[
\eta = \sqrt{\frac{a}{\nu} y}, \quad \psi = \sqrt{a\nu x f(\eta)}, \quad \theta(\eta) = \frac{T - T_w}{T - T\infty}, \quad \phi(\eta) = \frac{C - C\infty}{C_w - C\infty}
\]

The continuity equation (1) is satisfied if a stream function \(\psi = (x, y) \) is chosen as:

\[
u = \frac{\partial \psi}{\partial y}, \quad \nu = -\frac{\partial \psi}{\partial x}
\]

Using the above similarity transformation quantities, the governing equations (2) - (4) are transformed to the following coupled nonlinear ordinary differential equations:

\[
K \left[2 f f'' - f' f'' \right] + f'' + f + (f' + Mn)f' = 0
\]

\[
\phi'' + Sc f \phi' = 0
\]

with boundary conditions:

\[
f'(0) = \alpha, \quad f'(\infty) = 0, \quad \theta(0) = 1, \quad \theta'(\infty) = 0, \quad \phi(0) = 1 \quad \text{at} \quad \eta = 0
\]

\[
f'(\infty) \to 0, \quad \theta(\infty) \to 0, \quad \phi(\infty) \to 0 \quad \text{as} \quad \eta \to \infty
\]

where the parameters are defined as:

\[
K = k_0 a \quad \text{is the Deborah number}, \quad \eta \quad \text{is the similarity variable}, \quad \text{prime is the differentiation with respect to} \ \eta, \quad f', \ \theta \ \text{and} \ \phi \ \text{are the dimensionless velocity, temperature and species concentration respectively}, \quad Mn = \frac{\sigma \beta \nu}{a \rho} \quad \text{is the magnetic interaction parameter}, \quad \Pr = \frac{\mu C_p}{\kappa} \quad \text{is the Prandtl number}, \quad Sc = \frac{\nu}{D_m} \quad \text{is the Schmidt number}, \quad S = \frac{-V_w}{\sqrt{a\nu}} \quad \text{is the suction parameter}, \quad \alpha = \frac{b}{a} \quad \text{is the stretching parameter}, \quad A = M \left(\frac{a}{b} \right) \quad \text{is the velocity slip parameter and} \quad B = N \left(\frac{a}{b} \right) \quad \text{is the thermal slip parameter.}
\]

Other important physical quantities of interest which are germane to the technological and engineering applications of the problem are the skin friction coefficient \(C_f \), Nusselt number \(Nu_x \) and Sherwood number \(Sh_x \) which are defined as follows:

\[
C_f = \frac{\tau_w}{\rho u_w^2}, \quad Nu_x = \frac{x q_w}{\kappa (T - T\infty)}, \quad Sh_x = \frac{x h_w}{D_m (C_w - C\infty)}
\]

where the wall shear stress \(\tau_w \), heat flux \(q_w \) and mass flux \(h_w \) are given by:

\[
C_f \sqrt{\text{Re}_x} = (1 + K) f''(0), \quad Nu_x = -\theta'(0), \quad Sh_x = -\phi'(0)
\]

and \(\text{Re}_x = \frac{x u_w(x)}{\nu} \) is the local Reynolds number.
NUMERICAL PROCEDURE
An efficient fourth-fifth order Runge-Kutta-Fehlberg method alongside the shooting technique has been employed to investigate the flow model for the above coupled nonlinear ordinary differential equations (9) - (11) with mixed boundary conditions in equations (12) and (13) for different values of emerging parameter, namely: Deborah Number K, magnetic interaction parameter Mn, Prandtl number Pr, Schmidt number Sc, velocity slip parameter A and thermal slip parameter B. The nonlinear differential equations (9) – (11) are first decomposed into a system of first order differential equations. The coupled ordinary differential equations (9) - (11) are third order in $f(\eta)$ and second order in $\theta(\eta)$ and $\phi(\eta)$ which have been reduced to a system of seven simultaneous equations for seven unknowns. To numerically solve this system of equations using Runge-Kutta-Fehlberg method, the solutions require seven initial boundary conditions in all but two initial conditions in $f(\eta)$, one initial condition in each $\theta(\eta)$ and $\phi(\eta)$ are available. However, the values of $f'(\eta)$, $\theta(\eta)$ and $\phi(\eta)$ are known at $\eta \to \infty$. These free stream conditions are utilized to produce unknown initial conditions at $\eta = 0$ by employing shooting technique. The most important of this algorithm is to choose the appropriate parameters governing the flow. Thus, the coupled boundary value problem of third order in $f(\eta)$, second order in $\theta(\eta)$ and $\phi(\eta)$ has been reduced to a system of seven simultaneous equations of first order for seven unknown variables as follow:

The following new variables can be defined for the following equations:

$$f_1 = f(\eta) \quad f_2 = f'(\eta) \quad f_3 = f''(\eta) \quad f_4 = \theta(\eta) \quad f_5 = \theta'(\eta) \quad f_6 = \phi(\eta) \quad f_7 = \phi'(\eta)$$

The coupled higher order nonlinear differential equations and the mixed boundary conditions are transformed to seven equivalent first-order differential equations as follows:

$$f'' = \frac{1}{(1-Kf^2)^2} \left[f'^2 - ff'' - 2Kfff'' + Mnff' \right]$$

$$\theta'' = -Pr \frac{f}{f} \theta'$$

$$\phi'' = -Sc \frac{f}{f} \phi'$$

The value of $\eta_{\infty} = 10$ has been selected to be appropriate in nearly all cases for the physical parameters governing the flow. Thus, the coupled boundary value problem of third order in $f(\eta)$, second order in $\theta(\eta)$ and $\phi(\eta)$ has been reduced to a system of seven simultaneous equations of first order for seven unknown variables as follow:
\[f_1' = f_2 \]
\[f_2' = f_3 \]
\[f_3' = \frac{f_2^2 - f_1 f_3 - 2 K f_1 f_2 f_3 + Mn f_2}{1 - K f_1^2} \]
\[f_4' = f_5 \]
\[f_5' = -Pr f_1 f_5 \]
\[f_6' = f_7 \]
\[f_7' = -Sc f_1 f_7 \]

Also, the boundary conditions are transformed as:
\[f_1(0) = S, \quad f_2(0) = \beta + A f_1(0), \quad f_4(0) = 1 + B f_5(0), \quad f_6(0) = 1 \]
\[f_2(\infty) = 0, \quad f_4(\infty) = 0, \quad f_6(\infty) = 0 \]

Hence, the boundary value problem in equations (9) – (11) with the boundary conditions (12) and (13) is now converted into an initial value problem in equation (20) with the initial conditions in equation (21). Then, the initial value problem is solved by employing Runge-Kutta-Fehlberg integrating scheme appropriately guessing the missing initial values using the shooting method. For several sets of emerging parameters, the step size of \(\Delta \eta = 0.001 \) is used for the computational purposes by translating the algorithm into MAPLE codes as described by Heck (2003) and error tolerance of \(10^{-7} \) is used in all the cases. The results obtained are presented through plots for velocity, temperature and species concentration fields and through tables for local skin-friction coefficient, Nusselt and Sherwood numbers.

DISCUSSION OF RESULTS

The numerical solutions are obtained for the velocity, temperature and species concentration fields for different values of governing parameters. The results are displayed through graphs in Figures 1-16. It should be pointed out that Figures (1) - (5) satisfy the specified boundary conditions and Figures (6) - (16) reveal that the far field boundary conditions are satisfied asymptotically and hence this supports the accuracy of the numerical computations and results. Moreover, the behaviour of local skin friction coefficient, Nusselt number and Sherwood number due to the variations in various emerging parameters is also deliberated in Table 2. Table 1 depicts a comparison with previously published work of Hayat et al. (2011) available in the literature, in order to further check the accuracy of the present results.

The velocity field \(f' \) for different values of Deborah number \(K \), magnetic interaction parameter \(Mn \), stretching parameter \(\alpha \), suction parameter \(S \) and velocity slip parameter \(A \) are shown in Figures 1-5 respectively. Figure 1 reveals the influence of \(K \) on the flow field. It is evident from this figure that \(f' \) is a decreasing function of \(K \). This implies that a decrease in the fluid velocity corresponds to an enhancement of the velocity boundary layer thickness. From the physical point of view, when shear stress is eliminated, the fluid will come to rest. This kind of phenomenon is experienced in many polymeric liquids that cannot be
defined in the viscous fluid model. Higher values of K will produce a retarding force between two adjacent layers in the flow. For this reason, there will be a reduction in the velocity field and corresponding associated effect is noticed in the boundary layer thickness. Figure 2 shows the effect of Mn on f'. It is obvious that an increase in the values of Mn decrease the boundary layer thickness in the flow field. Figures 3 and 4 display the distinction of velocity field with respect to the variation in suction parameter S and stretching parameter α. On observing these figures, as the values of S increases, the velocity field decreases as anticipated. However, the velocity field increases as the values of α increase. In the same manner, Figure 5 establishes that the velocity distribution is seen to increase with the increase in the values of A, thereby decreasing the boundary layer thickness.

Figures 6 - 11 illustrate the variations of θ with respect to η for various values of K, Mn, α, Pr, B and S respectively. From Figures 6 and 7, it is observed that K and Mn have opposite effects on θ. An increase in K corresponds to an increment in the fluid temperature whereas the result of increasing Mn reduces the thermal boundary layer thickness in the flow field. The thermal boundary layers also decrease as the values of α and Pr increase as displayed in Figures 8 and 9. Higher estimation of Pr is found to decay the temperature field. This is due to the fact that Pr expresses the ratio of momentum diffusivity to thermal diffusivity. Thus, small values of Pr implies that the thermal diffusivity dominates and for higher estimation of Pr, the momentum diffusivity dominates.

As the values of suction parameter S increase, the temperature field decreases as shown in Figure 10. Consequently, the thermal boundary layer thickness and the surface temperature are also decreasing. Figure 11 demonstrates the variation of temperature with thermal slip parameter B. B is found to enhance the thermal boundary layer thickness.

Figures 12 - 16 describe the effects of K, Mn, S, α and Sc on the species concentration field. Figure 12 captures the influence of K on the species concentration distribution. As expected, it is observed that for any given value of η, the species concentration becomes increased with an increase in K. The variation of ϕ with different values of Mn is indicated by Figure 13. It is clear that the magnetic interaction parameter decreases the species concentration field. In Figures 14 and 15, it is interesting to note that S and α have the same effects on the species concentration boundary layer. Both of them noticeably decrease the concentration layer thicknesses. Figure 16 is plotted to display the influence of Sc, which is the ratio of momentum diffusivity to mass diffusivity, on species concentration field. It is observed that increasing the values of Sc corresponds to a decrease in the species concentration boundary layer thickness. This springs from the fact that at high Sc, the particles in the fluid concentration are giant with small diffusivity. However, the particles in the fluid concentration are very small with great diffusivity and are scarcely conditioned by the viscosity of the medium in the case of a low Sc.

In Table 1, the numerical values of the local Nusselt number in this paper for different values of Pr and α in the absence of thermal and velocity slip effects without consideration for species concentration in a hydrodynamic flow are in good agreement with the result published in Hayat et al. (2011). Therefore, this validates the presented results to be highly accurate to analyze this flow problem. Table 2 presents variations of local skin friction coefficient, Nusselt and Sherwood numbers in relation to K, Mn, S, α, B, A and Sc. From this table, as the values of Deborah number, magnetic interaction, suction, stretching and thermal slip parameters increase, the values of local skin friction coefficient increase. However, the local skin friction coefficient is found to decrease as the value of velocity slip increases. Also, it is worthy to note that as the values of K, Mn, α and B increase, the local rate of heat transfer decreases whereas an increase in the values of S, A and Pr is found to increase the local heat transfer rate. Finally, it is evident from Table 2 that the local rate of mass transfer is enhanced by increasing the values of Schmidt number, Prandtl number, suction, stretching and thermal slip parameters. In contrast, as the values of Deborah number, magnetic interaction and velocity slip parameters increase, the local Sherwood number decreases.
Fig. 1: Variation of K on velocity field when $Mn = 0.5$, $S = 0.5$, $\alpha = 0.1$, $A = 0.1$.

Fig. 2: Variation of Mn on velocity field when $K = 5$, $S = 0.5$, $\alpha = 0.1$, $A = 0.1$.
Fig. 3: Variation of S on velocity field when $K = 5$, $Mn = 0.5$, $\alpha = 0.1$, $A = 0.1$.

Fig. 4: Variation of α on velocity field when $K = 5$, $S = 0.5$, $Mn = 0.5$, $A = 0.1$.

Fig. 5: Variation of A on velocity field when $K = 5$, $S = 0.5$, $\alpha = 0.1$, $Mn = 0.5$.

FUDMA Journal of Sciences (FJS) Vol. 2 No. 2, June, 2018, pp 116 - 132
Fig. 6: Variation of K on temperature field when $Pr = 0.71$, $B = 0.5$, $S = 0.5$.

Fig. 7: Variation of Mn on temperature field when $Pr = 0.71$, $B = 0.5$, $K = 5$, $S = 0.5$.

Fig. 8: Variation of S on temperature field when $Pr = 0.71$, $B = 0.5$, $K = 5$, $\alpha = 0.5$.
Fig. 9: Variation of α on temperature field when $Pr = 0.71$, $B = 0.5$, $K = 5$ $S = 0.5$.

Fig. 10: Variation of Pr on temperature field when $\alpha = 0.3$, $B = 0.5$, $K = 5$ $S = 0.5$.

Fig. 11: Variation of B on temperature field when $Pr = 0.71$, $\alpha = 0.3$, $K = 5$ $S = 0.5$.

Fig. 12: Variation of K on species concentration field when $Sc = 0.62$, $A = 0.1$, $\alpha = 0.3$.

Fig. 13: Variation of Mn on temperature field when $Sc = 0.62$, $A = 0.1$, $K = 5$.

Fig. 14: Variation of S on species concentration field when $Sc = 0.62$, $A = 0.1$, $K = 5$.
Fig. 15: Variation of α on species concentration field when $Sc = 0.62$, $A = 0.1$, $K = 5$.

Fig. 16: Variation of Sc on species concentration field when $\alpha = 0.3$, $A = 0.1$, $K = 5$.
Table 1: Comparison of the values of local Nusselt number \(-\theta'(0)\) for parameters \(Pr\) and \(\alpha\) when \(S = 0.5\).

\[
K = 0.2, \quad Mn = A = \phi = Sc = 0.0, \quad \text{with convective boundary conditions.}
\]

<table>
<thead>
<tr>
<th>(Pr)</th>
<th>(\alpha)</th>
<th>(\text{Nu} / \text{Re}^{1/2}) Hayat et al. (2011)</th>
<th>(\text{Nu} / \text{Re}^{1/2}) (Present Work)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td></td>
<td>0.23336</td>
<td>0.23389</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>0.36588</td>
<td>0.36625</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>0.45796</td>
<td>0.45797</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td>0.52558</td>
<td>0.52557</td>
</tr>
<tr>
<td>1.0</td>
<td>0.1</td>
<td>0.36588</td>
<td>0.36605</td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td>0.40466</td>
<td>0.40473</td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td>0.45825</td>
<td>0.45830</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>0.47254</td>
<td>0.47256</td>
</tr>
</tbody>
</table>

Table 2: Values of local skin friction coefficient, Nusselt and Sherwood numbers when \(K = 0.1, \alpha = 0.4, Mn = 5, S = 0.5, A = 0.3, B = 0.5\):

<table>
<thead>
<tr>
<th>(K)</th>
<th>(Mn)</th>
<th>(S)</th>
<th>(\alpha)</th>
<th>(B)</th>
<th>(A)</th>
<th>(Pr)</th>
<th>(Sc)</th>
<th>(f''(0))</th>
<th>(-\theta'(0))</th>
<th>(-\phi'(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUDING REMARKS

In this paper, the upper-convected Maxwell model with thermal and velocity slip effects is employed to investigate the heat and mass transfer of Maxwell fluid over stretching sheet in the presence of a transversely applied uniform magnetic field. The numerical results suggest the following:

- The velocity field increases for higher estimation of stretching and magnetic interaction parameters but it decays with increasing values of Deborah number and suction parameter.
- The temperature distribution is enhanced by increasing values of Deborah number and thermal slip parameter. However, the temperature is a decreasing function of Prandtl number, magnetic interaction, suction and stretching parameters.
- The species concentration field increases by increasing values of Deborah number and thermal slip parameter whereas the field is found to decay with increases in the values of Schmidt number, magnetic interaction, suction and stretching parameters.
- The Deborah number, magnetic interaction, stretching, thermal slip and suction parameters have similar effects on the local skin friction coefficient. Local rate of heat transfer decreases with an increase in the values of Deborah number, magnetic interaction, stretching and thermal slip parameters. However, the local rate of mass transfer is an increasing function of the Schmidt number, suction, stretching and thermal slip parameters.

REFERENCES

