LIPOXYGENASE (LOX) INHIBITORY ACTIVITY OF LEAVES OF CEIBA PENTANDRA (L.) GAERTN: A NEGLECTED VEGETABLE FROM NIGERIA

*Bello, O. M., Ogbesejana, A. B. and Tijjani, A.
Department of Applied Chemistry, Federal University Dutsin-Ma, Katsina State, Nigeria.
*Corresponding Author’s email: obello@fudutsinma.edu.ng

ABSTRACT
In the search for inhibitors of lipoxygenase (LOX) for therapeutic significance, this present study was aimed at evaluating the anti-lipoxygenase (anti-LOX) of the leaves of Ceiba pentandra-a Nigeria’s underutilized vegetable. This study tends to assess its antioxidant activity beside the anti-inflammatory of the leaves through 2, 2’-azino-bis-(3-ethyl) benzothiazoline-6-sulfonic acid (ABTS) radical cation scavenging and anti-lipoxygenase (anti-LOX) activity tests. The positive control employed are indomethacin and ascorbic acid. The IC50 value for the anti-inflammatory activity of the extract is significant (102.5µg/mL) when compared with that of the positive control 90.4µg/mL. (Indomethacin), the extract showed a good antioxidant effect with an IC50 of 0.99µg/mL, ascorbic acid was used as a positive control (0.65µg/mL). Hence, the results support the fact that many edible but neglected vegetables (the leaves of C. pentandra) in West Africa possess huge medicinal importance beside culinary uses.

Keywords: C. pentandra; ABTS; anti-LOX; neglected vegetable

INTRODUCTION
Medicinal plants’ role in maintaining and preserving human life and health is well recognized and accepted (Bello et al., 2018; Moerman, 1996). In developing countries like Nigeria and many parts of the World, many of these medicinal plants are employed as condiments, food ornaments, spices and for managing array of diseases (Bello et al., 2018). Nigeria has one of the major economy in Africa with a projected per capital income of >$300, as most of her population living in abject poverty (WHO, 2007). This means more than half of her population may not be able to afford orthodox medicine for managing their health coupled with serious side effects accompanying synthetic drugs (Chindo et al., 2002; Adegboye et al., 2008)

Ceiba pentandra (L.) Gaertn. belongs to the genus Ceiba which is in the family Malvaceae of the order Malvales (formerly of the family Bombacaceae), it is a tropical tree (ThePlantList, 2013). ThePlantList, 2013 includes ninety-seven (97) scientific plants names that belongs to the genus Ceiba and also gave twelve others names synonymous to Ceiba pentandra (The Plant List, 2013). Ceiba pentandra is native to South America with tropical West Africa, and it is easily found all over southern Asia and East Indies though in a lesser measure (Anigo et al., 2012). The tree is mostly known as the Ceiba, Java cotton, Hara kapok, Silk cotton and Samauma (Anigo et al., 2012; Enechi et al., 2013). C. pentandra is commonly referred to as Kapok and the fibre gotten from its seed pods is often called Kapok. It is one of the largest forest tree in West Africa. Kapok is also known as Rimi (Hausa), Bamtami (Fulani), Arabaogun (Yoruba) and Akpi (Igbo) (Aloke et al., 2010; Anosike et al., 2014).

In Nigeria, the leaves of C. pentandra are cooked as vegetables in form of slurry sauce comparable to Okra and used as livestock fodder (Anosike et al., 2014). Different parts of C. pentandra have been described to be beneficial as effective remedies against constipation, diabetes, dizziness, fever, headache, hypertension, leprosy, mental diseases and peptic ulcer (Aloke et al., 2010). Traditional medicine practitioners in Nigeria use the bark for the management of infections, it is employed as diuretics and to banish evil spirits. Its use in the treatment of diarrhea is very common in West African countries (Cowan, 1999; Kirkitakar and Basu, 1987; Ueda et al., 2002). The plant is mostly use in India and Malaya against bowel problems. In West Africa, it is generally
used in the treatment of diarrhea (Bello et al., 2017; Bello et al., 2017b).

The anti-inflammatory activity was studied using the anti-lypoxygenase (anti-LOX) activity of the plant extract. Lipoxynagenes (LOX) are members of a family of non-heme iron-containing dioxygenases that catalyze the addition of molecular oxygen to polyunsaturated fatty acids in lipids containing a cis, cis-1,4-pentadiene system to give an unsaturated fatty acid hydroperoxides. It has been found that the lipoxygenase (LOX) products play a key role in many inflammatory diseases (Steinhilber, 1999). Therefore, based on paucity of literature on anti-inflammatory activities of the leaves of this plant as shown in Table 5, hence the study aimed to provide anti-lypoxygenase (anti-LOX) and antioxidant activities of leaves extract of C. pentandra, an underutilized wild vegetable in Nigeria for the first time.

MATERIALS AND METHODS

Collection and Preparation of Plant Materials

Fresh leaves of C. pentandra were collected in the month of February, 2017 at different market in Ilorin metropolis. The plant was identified and authenticated at Plant Biology Department, University of Ilorin with voucher number. The leaves were harvested from the authenticated plant, air dried for three weeks to completely remove the moisture content. Subsequently the dried leaves were crushed using pre-washed pestle and mortar and was stored in an air tight polythene container.

Preparation of Plant Material

The powdered C. pentandra (400g) was macerated in 3 L of n-hexane in extraction jar such that the level of the solvent was above that of the plant materials. The macerated mixtures were then left for 72 hours at ambient temperature. The extracts were filtered out from the macerated mixture using Whatman 185 µm filter paper. The n-Hexane extracts were concentrated in a vacuum rotary evaporator under reduced pressure and suitable temperature, transferred to appropriately labelled 250 mL beaker and allowed to stand at ambient temperature to permit evaporation of residual solvents.

The procedure was repeated using methanol after the residue of the n-hexane extract had been air-dried.

Determination of 2, 2′-azino-bis-(3-ethyl) benzothiazoline-6-sulfonic acid (ABTS) radical cation scavenging activity.

The 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonate, ABTS radical cation decolourization assay based on the scavenging of ABTS+ radicals by antioxidants component of the extracts was used. The study was evaluated in vitro at various concentrations (100, 200, 300, 400, 500) of the extract. The assay follows the procedure of Atolani et al. (2013), with slight modifications (Bello et al., 2018; Atolani et al., 2013). All analyses were determined in duplicate.

Anti-inflammatory Activity of the Extract of C. pentandra

This activity was studied using the anti-lypoxygenase (anti-LOX) activity of the plant extract. The anti-Lipoxygenase (anti-LOX) activity was studied using linoleic acid as substrate and lipoxidase as enzyme according to Steinhilber, (1999). Test samples were dissolved in 0.25 ml of 2 M borate buffer at pH 9.0 and added 0.25 ml of lipoxidase enzyme solution (20,000 U/ml) then incubated for 5 min at 25°C. After which, 1.0 ml of lenoleic acid solution (0.6 mM) was added, and thoroughly mixed.

\[
\% \text{ inhibition} = \frac{(A_{control} - A_{sample}) \times 100}{A_{control}} \tag{1}
\]

where; A = absorbance

The absorbance was measured at 234 nm. Indomethacin was used as reference standard and the percent inhibition was also calculated using equation 1 above (Bello et al., 2018).

Analysis of Data

GraphPad Prism 3 software (San Diego, USA) was used to determine the IC₅₀ on through a non-regression analysis. The IC₅₀ was taken as the concentration of sample that scavenged 50 % of the radicals. Results are presented as mean ± standard deviation (±SD) of the mean.
Table 1: ABTS Activity of Methanol Extract of *Ceiba pentandra*

<table>
<thead>
<tr>
<th>Concentration (µg/mL)</th>
<th>Methanol Extract of C. pentandra (% Mean ± SD)</th>
<th>Ascorbic acid (% Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>27.94±6.54</td>
<td>18.55 ± 0.61</td>
</tr>
<tr>
<td>200</td>
<td>29.19±5.90</td>
<td>21.42 ± 0.38</td>
</tr>
<tr>
<td>300</td>
<td>29.63±5.79</td>
<td>25.94 ± 4.96</td>
</tr>
<tr>
<td>400</td>
<td>28.70±4.81</td>
<td>26.46 ± 4.96</td>
</tr>
<tr>
<td>500</td>
<td>31.59±7.28</td>
<td>22.35 ± 0.15</td>
</tr>
</tbody>
</table>

Table 2: IC₅₀ ABTS Activity of Methanol Extract of *C. pentandra*

<table>
<thead>
<tr>
<th>Test materials</th>
<th>IC<sub>50</sub> (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol extract of C. pentandra</td>
<td>0.99 ±0.11</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>0.65 ±0.02</td>
</tr>
</tbody>
</table>

Table 3: Lipoxygenase Activity of Methanol Extract of *C. pentandra*

<table>
<thead>
<tr>
<th>Concentration (µg/mL)</th>
<th>Methanol Extract of C. pentandra (% Mean ± SD)</th>
<th>Indomethacin (% Mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>48.50±0.00</td>
<td>29.21±0.00</td>
</tr>
<tr>
<td>200</td>
<td>51.07±0.00</td>
<td>39.73±0.00</td>
</tr>
<tr>
<td>300</td>
<td>47.81±0.00</td>
<td>69.42±0.00</td>
</tr>
<tr>
<td>400</td>
<td>37.69±0.00</td>
<td>82.42±0.00</td>
</tr>
<tr>
<td>500</td>
<td>31.13±0.00</td>
<td>95.30 ± 0.00</td>
</tr>
</tbody>
</table>

Table 4: IC₅₀ Anti-LOX Activity of Methanol Extract of *C. pentandra*

<table>
<thead>
<tr>
<th>Test materials</th>
<th>IC<sub>50</sub> (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Methanol extract of C. pentandra</td>
<td>102.5±37.49</td>
</tr>
<tr>
<td>2 Ascorbic acid</td>
<td>90.4±18.05</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

The antioxidant activity (ABTS) and lipoxygenase inhibitory effect of the methanol extract of the leaves of *C. pentandra* are shown in Tables 1 and 3, respectively. The extract displays the highest antioxidant activity at 100 µg/mL concentration when compared with the positive control. From Table 1, it was observed that, as the concentration increases, there was a noticeable increase in antioxidant activity. The most significant anti-LOX activity was observed at a concentration of 500 µg/mL which is the highest in this study. Tables 2 and 4 showed the IC₅₀ values for the activities (antioxidant and anti-inflammatory) evaluated in this study, these activities compared favourable at concentrations of 0.99 µg/mL and 102 µg/mL with the IC₅₀ values of positive control of the extract at concentrations of 0.65 µg/mL and 90 µg/mL. The significance of the activity of the extract was determined by employing the positive control. Many authors have established the anti-inflammatory activity of some parts of *C. pentandra* (i.e. seeds) stem bark and oil from the seeds though no literature on the anti-inflammatory activity of the leaves was found. Alagawadi and Shah, (2011) reported the anti-inflammatory activity of the seed of *C. pentandra*, this extract was administered at various concentrations but doses of 200 mg/kg and 400 mg/kg reduced paw edema volume significantly. The result clearly shows anti-inflammatory effect of seed extracts. Elion Itou et al., (2015) investigated the anti-inflammatory and analgesic effects of aqueous extract of the stem of *C. pentandra* using mice, they reported thereafter that aqueous extract of the stem bark at doses 400 and 800 mg/kg showed a significant anti-inflammatory and analgesic activity. The anti-inflammatory activity of the oil from the seeds of *C. pentandra* have been reported by Kiran and Rao, (2014) by in vitro and in vivo
These studies complement our work, which shows the anti-inflammatory activity of the leaves of *C. pentandra* (Table 5). Many assays have been employed to assess the anti-inflammatory activity of isolated compounds and plants’ extracts. One of the most commonly used one is the anti-LOX assay, this is mostly employed because anti-LOX agents play important role in preventing several inflammation-related diseases such as allergic diseases, arthritis, asthma, autoimmune diseases, cancer, leukemia and lymphoma (Dobrian *et al.*, 2011). Therefore, the search for anti-LOX is imperative since inhibitors of LOX antagonise the biological synthesis of leukotrienes which synonymous to these above mentioned diseases (Dobrian *et al.*, 2011; Rackova *et al.*, 2007). Pidgeon *et al.*, 2007, recommended that anti-LOX agents may help in finding new, biologically and pharmacologically active metabolites which may be useful in managing many diseases (Pidgeon *et al.*, 2007). Since medicinal plants and their preparations have long history of use by humans for the treatment of many diseases, they can be sources of many anti-LOX agents. Hence the significant LOX inhibiting index that the leaves’ extract of *Ceiba pentendra* show may have more important role than inflammation but related to preventing other diseases as shown above.

CONCLUSION

From this study, it was observed that methanol extract of the leaves of *C. pentandra* has significant anti-inflammatory and antioxidant activity. Therefore, we suggest that *C. pentandra* constituents could provide a lead to the development of novel anti-inflammatory drugs. Hence, the traditional use of *C. pentandra* and its pharmacological importance, beside its basic nutritional values, is supported by this study. However, further isolation work is recommended to know its constituents and the structural activities relationship of the isolated compounds. This vegetable could play significant protective role against diseases after thorough clinical examination of the isolates from this medicinal plant. The plant can be planted more in household because of its many advantages and can be used as a health food.

Conflicts of Interest

The authors declare no conflict of interest.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Table 5: Ethnomedicinal importance of *Ceiba pentandra*.

<table>
<thead>
<tr>
<th>Parts Used</th>
<th>Country</th>
<th>Ethopharmacology</th>
<th>Biological Activity</th>
<th>Method</th>
<th>Isolated Compounds</th>
<th>Toxicity</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barks</td>
<td>Côte d'Ivoire</td>
<td>To manage symptoms as fever, abscess, paronychia, mental illness, conjunctivitis, dizziness, headache, Ceiba pentandra stem bark decoction has been used as a diuretic, aphrodisiac, and to treat headache,</td>
<td>Antibacterial activity</td>
<td>In vitro</td>
<td>vavain 3’-O-β-D-glucoside, vavain, flavan-3-ol(+)-catechin</td>
<td></td>
<td>Julien et al., 2015; Arbonnier, 2000; Noreen et al., 1998</td>
</tr>
<tr>
<td>Stem Bark/Heartwood</td>
<td>Nigeria, India, India, Malaysia, Nepal</td>
<td>Ceiba pentandra stem bark decoction has been used as a diuretic, aphrodisiac, and to treat headache,</td>
<td>Antidiarrhoeal; hepaprotective effect; Antiulcerogenic Activity; Antibacterial and Antihelminthic activity; anti-sickle cell anemia; antiangiogenetic activity</td>
<td>In vivo, In vitro</td>
<td>Pentandrin, pentandrin glucoside, b-sitosterol, 3-O-b-D-glucopyranoside, 2,7-dihydroxy-8-formyl-5-isopropyl-3-methyl-1,4-naphthoquinone, 8-formyl-7-hydroxy-5-isopropyl-2-methoxy-3-methyl-1,4-naphthoquinone, L-rhamnose, D-xylene, L-arabinose, D-glucose, D-galactose, D-glucuronic acid, D-galacturonic acid</td>
<td></td>
<td>Sule et al., 2009; Burkill, 1985; Ngounou et al., 2000; Kishore et al., 2013; Bairwa et al., 2010; Ibara et al., 2007; Shah et al., 2017; Nam et al., 2003;</td>
</tr>
<tr>
<td>Seeds</td>
<td>India, Nepal, Nigeria</td>
<td>To treat asthma, dysentery, kidney problems and fever</td>
<td>Antioxidant and flavonoid content; Antibacterial, Anti-inflammatory activity</td>
<td>In vitro; in vivo</td>
<td>8-formyl-7-hydroxyl-5-isopropyl-2-methoxy-3-methyl-1,4-naphthaquinone,</td>
<td></td>
<td>Pulok et al., 2008; Mohan et al., 2013; Parulekar, 2017; Alagawad and Shah, 2011</td>
</tr>
<tr>
<td>Root / Rootbark</td>
<td></td>
<td></td>
<td>Hypoglycemic and Antidiabetics effect</td>
<td></td>
<td>8-formyl-7-hydroxyl-5-isopropyl-2-methoxy-3-methyl-1,4-naphthaquinone,</td>
<td></td>
<td>Rao et al., 1993; Kaimal et al., 1970; Dzeufiet et al., 2006a;</td>
</tr>
<tr>
<td>No.</td>
<td>Leaves</td>
<td>Country</td>
<td>Infusion Use</td>
<td>Secondary Metabolites</td>
<td>Antimicrobial Activity</td>
<td>Antioxidant Activity</td>
<td>LD₅₀ (mg/kg b.w)</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5</td>
<td>Leaves</td>
<td>India, Nigeria, Indonesia, Nepal</td>
<td>Infusion of the C. pentandra leaves is used for treatment of cough, intestinal and mucous membranes inflammation, and urethritis</td>
<td>7-hydroxycadalene, 2,7-dimethoxy-S-isopropyl-3-methyl-8,1-naphthalene carbolactone, 2-hydroxy-5-isopropyl-7-methoxy-3-methyl-8,1-naphthalene, carbolactone, cycloprenep fatty acids, dihydrosterculic, linoleic acids</td>
<td>Antipyretic activity, antifungal activity, Antibacterial and Antihelminthic activity; Against urinary tract infection, antioxidant activity, Ameliorative properties, anti-sickle cell anemia</td>
<td>In vivo, In vitro, disk diffusion and agar dilution techniques</td>
<td>LD₅₀ was >5000 mg/kg b.w</td>
</tr>
</tbody>
</table>
REFERENCES.

