PREVALENCE OF LISTERIA SPECIES IN BLUE WHITING (MICROMESISTUS POUTASOU) IN LAGOS STATE, NIGERIA.

1Amusan, E. E., 2Sanni, A. I. and 3Banwo, K.

1Department of Fish Technology and Product Development, Nigerian Institute for Oceanography and Marine Research, Victoria Island, Lagos, Nigeria.
2 Department of Microbiology, University of Ibadan, Oyo State, Nigeria.

Corresponding authors e-mail: estheramusan20@gmail.com, Tel:08183162050

ABSTRACT
Listeria species are ubiquitous in nature. The ubiquity of Listeriae enables them to colonize and persist in the food-processing environments and the food chain. Blue Whiting also known as panla is a pelagic fish that is widely consumed in Lagos and its environs. The present study examined the prevalence of Listeria spp. from Blue Whiting sold at three retail markets in Lagos State. One hundred and twenty-four Blue Whiting samples consisting of fifty-three raw fish and seventy-one smoked fish were microbiologically analyzed using the Oxoid Listeria Précis method, Oxoid Listeria Test Kit and MICROBACT Listeria 12L system. Genotypic identification was carried out using 16S rRNA gene sequencing. Of the 124 samples examined, 21(16.9%) were positive for Listeria spp. with 18 (14.5%) identified as L. innocua and 3 (2.4%) as L. grayi. Higher occurrences (14-24%) of Listeria spp. were observed between July and November, 2016. Fourteen out of 18 isolates selected showed amplification for the 16S rRNA region of Listeria spp. Sanitary conditions and personal hygiene should be adhered to during processing, distribution and marketing of Blue Whiting so as to reduce contamination by Listeria species since the presence of L. innocua serves as an indicator for L. monocytogenes.

Keywords: Listeria species, Blue Whiting, prevalence.

INTRODUCTION
Listeria species are Gram-positive, non-spore forming, rod-shaped bacteria. They are found throughout the environment, residing in soil, water, sewage, vegetation, animal feces, farms and food-processing facilities (Todd and Notermans, 2011). Its most important species, Listeria monocytogenes is the causative agent of one of the deadliest foodborne illnesses called listeriosis. The organism can survive and grow under several environmental conditions. They can contaminate processing plants and retail environments in which ready-to-eat foods are produced and served (Jarvis et al., 2016). The main causes of listeriosis are poor microbiological quality of raw materials, cross contamination, inadequate cleaning practices, improper storage temperature, inadequate preparation processes and lack of training on food hygiene (Osimani and Clementi, 2016). This disease has developed as a result of change in eating habits and large scale industrial food production (Adams and Moss, 2010). It also leads to losses of billions of dollars yearly due to recalls of contaminated foods and patients medical treatment expenses (Camargo et al., 2016). Food items that may contain Listeria are fruits and vegetables (Hadjilouka et al., 2014; Montero et al., 2015), dairy products (Dalzini et al., 2015; Karthikeyan et al., 2015), meat (Hadjilouka et al., 2014; Montero et al., 2015), fish (Wang et al., 2013) and seafood products (Amusan et al., 2017).

Blue whiting (Micromesistus poutasou) is a typical pelagic, lean fish species, which is popularly called Panla. It is a small codfish usually 22-30 cm. It has been recognized as a readily available and nutritious marine fish (Kolade, 2015). Although the occurrence of L. monocytogenes in Nigerian food processing facilities and foods has been investigated (Chukwu et al., 2006, Salihu et al., 2008, Eruteya et al., 2014, Ajayeoba et al., 2016, Amusan et al., 2017), there is insufficient data regarding listeriosis cases and outbreaks directly associated with food consumption. From researches conducted in Nigeria, the prevalence of Listeria species in fish and fishery products has been between 6.6 and 40% (Chukwu et al., 2006; 6.6%, Salihu et al., 2008; 25%, Ikeh et al., 2010; 40%, Amusan et al., 2017; 25.4%). Thus it is important to generate information on the prevalence of this pathogen since fish and fishery products may be a vehicle for Listeria species. The aim of this work was to examine the prevalence of Listeria spp. in Blue Whiting sold at three retail markets in Lagos State, South-West, Nigeria.

MATERIALS AND METHODS
Sample Collection
One hundred and twenty-four Blue Whiting samples consisting of fifty-three raw fish and seventy-one smoked fish were collected monthly for a year from Badagry, Iyana Ipaja and...
Mushin markets. These were examined for the presence of Listeria.

Isolation and Identification of Listeria species

The isolation of Listeria was carried out using the Oxoid Listeria Precis method. For each sample, 25 g was added to 225 ml of Oxoid Novel Enrichment (ONE) broth and stomached for 30 seconds to mix the sample. It was incubated at 30 °C for 24 hours. After 24 h enrichment, the broth cultures were agitated and a loopful was inoculated onto Brilliance Listeria agar. This was incubated appropriately (37 °C for 24 – 48 h). The plates were examined for blue-green colonies with or without opaque white halos; at least 3 suspected colonies were subcultured on Tryptone Soya Agar (TSA, Oxoid) and incubated at 37 °C for 24 h. Phenotypic characterization such as Gram’s staining, Catalase and motility tests were carried out according to the methods of Hitchins and Jinneman, (2011). The Oxoid Listeria Latex Agglutination Test and MICROBACT Listeria 12L system were also used for phenotypic characterization.

Molecular Characterization

DNA Isolation

A single Listeria colony was grown overnight on TSA at 37 °C. One colony from the culture was inoculated into 5 ml of Tripticease Soy Broth and incubated overnight at 37 °C. The broth culture of 2.5 ml was centrifuged and the pellet washed in 1 ml of distilled water and resuspended in an Eppendorf tube broth culture of 2.5 ml was centrifuged and the pellet washed in 1 ml of distilled water and resuspended in an Eppendorf tube containing 400 µl of phosphate buffer saline (PBS). The DNA was extracted using Qiagen DNA extraction kit according to the manufacturer’s instruction.

Polymerase Chain Reaction of Listeria isolates using 16S rRNA specific primer for Listeria spp.

The PCR was carried out using C1000 Touch Thermal cycler (BioRad). The PCR mixture (25 µL) for reactions involving 16S rRNA consisted of 2.5 µl 10×PCR buffer, 2.0 µl dNTP (deoxynucleoside triphosphate), 0.25 µl each of appropriate primer, 0.25 µl AmphiTaq DNA polymerase (TransGen Biotech, China), 14.75 µl sterile distilled water and 5 µl of appropriate DNA preparation. A reaction mixture with no DNA template was used as a negative control in each reaction. The cycling conditions were the template DNA was denatured at 95 °C for 3 min followed by 35 cycles of amplification (each cycle consisted of denaturation at 94 °C for 1 min, annealing at 60 °C for 2 min and elongation at 72 °C for 1 min). A final extension was performed for 10 min at 72 °C. The amplified products (5 µl) were analyzed by 1.5 % agarose gel electrophoresis and ethidium bromide staining. The DNA bands were observed under an ultraviolet (UV) transilluminator (Park et al., 2012). The PCR products for the 16S rRNA were sequenced at GATC Biotech, Germany. The sequences obtained were blasted and compared with similar sequences in the GenBank (NCBI, USA).

RESULTS

The phenotypic identification showed that all isolates were Gram positive short rods, motile, catalase positive and gave positive reaction to Listeria test kit. The MICROBACT 12L was able to identify the isolates as Listeria grayi and L. innocua. The prevalence of Listeria species in raw and smoked Blue Whiting are shown in Tables 1 & 2. Ten (18.9%) of the raw samples were positive for Listeria spp. and these were all isolated from Iyana Ipaja market only. The smoked samples had a prevalence rate of 15.5%. A total of 124 samples of Blue Whiting were screened for Listeria spp. (Table 3). Twenty-one samples were positive for Listeria spp. with 18 (14.5%) identified as L. innocua and 3 (2.4%) as L. grayi. Higher occurrences of Listeria spp. were observed between July and November (Figure 1). Fourteen out of 18 isolates selected showed amplification for the 16S rRNA region of Listeria spp. (Plate 1).

TABLE 1: Prevalence of Listeria spp. in Raw Blue Whiting

<table>
<thead>
<tr>
<th>Markets</th>
<th>Number of samples analyzed</th>
<th>Listeria spp. Positive n (%)</th>
<th>Listeria grayi Positive n (%)</th>
<th>Listeria innocua Positive n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badagry</td>
<td>15</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Iyana Ipaja</td>
<td>23</td>
<td>10 (43.5)</td>
<td>2 (8.7)</td>
<td>8 (34.8)</td>
</tr>
<tr>
<td>Mushin</td>
<td>15</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>10 (18.9)</td>
<td>2 (3.8)</td>
<td>8 (15.1)</td>
</tr>
</tbody>
</table>

TABLE 2: Prevalence of Listeria spp. in Smoked Blue Whiting

<table>
<thead>
<tr>
<th>Markets</th>
<th>Number of samples analyzed</th>
<th>Listeria spp. Positive n (%)</th>
<th>Listeria grayi Positive n (%)</th>
<th>Listeria innocua Positive n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badagry</td>
<td>23</td>
<td>4 (17.4)</td>
<td>0 (0.0)</td>
<td>4 (17.4)</td>
</tr>
<tr>
<td>Iyana Ipaja</td>
<td>22</td>
<td>3 (13.6)</td>
<td>1 (4.5)</td>
<td>2 (9.1)</td>
</tr>
<tr>
<td>Mushin</td>
<td>26</td>
<td>4 (15.4)</td>
<td>0 (0.0)</td>
<td>4 (15.4)</td>
</tr>
<tr>
<td>Total</td>
<td>71</td>
<td>11 (15.5)</td>
<td>1 (1.4)</td>
<td>10 (14.1)</td>
</tr>
</tbody>
</table>
TABLE 3: Prevalence of *Listeria* spp. in Blue Whiting

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Number of samples analyzed</th>
<th>Listeria spp. positive n (%)</th>
<th>Listeria grayi n (%)</th>
<th>Listeria innocua n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>53</td>
<td>10 (18.9)</td>
<td>2 (3.8)</td>
<td>8 (15.1)</td>
</tr>
<tr>
<td>Smoked</td>
<td>71</td>
<td>11 (15.5)</td>
<td>1 (1.4)</td>
<td>10 (14.1)</td>
</tr>
<tr>
<td>Total</td>
<td>124</td>
<td>21 (16.9)</td>
<td>3 (2.4)</td>
<td>18 (14.5)</td>
</tr>
</tbody>
</table>

Fig. 1: Monthly Distribution of *Listeria* spp. isolated from Blue Whiting

PLATE 1: Agarose gel showing Polymerase Chain Reaction amplified product of 938bp for 16S rRNA specific primer for *Listeria* spp.
Lane M: Molecular Weight Marker, Lanes 1-10, 13-14 and 17: *Listeria* spp., Lane 11: control reaction

DISCUSSION

The study has shown that *Listeria* spp. can be found in fish such as Blue Whiting. The presence of *Listeria* spp. in raw blue whiting is similar to the observation in different cities in Nigerian seafood sources where 16% was observed by Adebayo-Tayo et al. (2012) from Uyo; 13.3% of Adeshina and Adegnewale (2015) from Ilorin; 25.4% by Amusan et al. (2017) from Lagos. Higher prevalence of 40%, 25%, 43% and 36% for *Listeria* spp. in raw fish respectively as recorded by the authors (Ikeh et al., 2010; Amusan, 2012; Vinothkumar et al., 2013; Rezai et al., 2018). The presence of *Listeria* spp. in smoked and fried fish was reported by Chukwu et al., 2006; Salihu et al., 2008; Adeyeye et al., 2015 and Adeshina et al., 2017. In this study, *L. innocua* had the highest prevalence from blue whiting. *L. innocua* and *L. grayi* have also been isolated from different fish species in various cities across Nigeria (Shinkafi and...
Ukwaja, 2010; Nwachukwu and Madubuko, 2013). L. innocua and L. monocytogenes are often found in the same food processing environments thus, the presence of this non-pathogenic spp. (L. innocua) may indicate potential contamination with L. monocytogenes (Gasnov et al., 2005; Gomez et al., 2012). Furthermore, the contamination of Listeria could have been caused by its persistence as biofilms in equipment, utensils, floors and drainage system from the processing environment.

A higher incidence of Listeria was observed during the rainy season than the dry season. This is similar to the results obtained by Eruteye et al. (2014) and Ajayeoba et al. (2015). Climatic conditions such as rainfall have an effect on the occurrence of Listeria spp. (Jami et al., 2014). The rainy season in South West, Nigeria starts in March and lasts till November (Ajayeoba et al., 2015). An increase in bacterial contamination occurs on surface waters during rainfall thereby causing a greater risk of Listeria contamination since these water contain lots of human, environmental and animal wastes in which Listeria is a common habitat (Jami et al., 2014; Ajayeoba et al., 2015). The standard microbiological methods for identifying Listeria spp. are strenuous and time consuming. Thus, there is a need to use rapid and reliable molecular methods for proper identification. In general, DNA-based typing approaches have been recognized as simple and cost-effective methods that have better discriminatory power than phenotypic approaches (Mohamed et al., 2016). This study showed that 16S rRNA gene sequencing analysis approach was valuable in the identification of Listeria spp. This is in agreement with Hellberg et al. (2013) who also used 16S rRNA gene sequencing for differentiation and molecular subtyping of Listeria spp. The 16S rRNA gene sequencing has been used for identification of the bacteria at the species level (Woo et al., 2008). It is a multiplicity housekeeping gene containing the highly conservative regions and hypervariable regions with considerable sequence diversity among different bacteria (Chakravorty et al., 2007).

CONCLUSION

Listeria grayi and L. innocua were isolated from blue whiting from all the three markets examined. Although the prevalence rate was low, the severity of the illness is significant if contacted. Thus, personal hygiene and sanitary conditions should be adhered to in order to avoid infections caused by these organisms.

REFERENCES

PREVALENCE OF LISTERIA SPECIES... Amusan, Sanni and Banwo

