Shamsu Ado Zakari, A. A. Nuhu, K. T. Aliyu, S. A. Tadda


Advancements in gene editing tools have transformed the fields of the agricultural system and crop improvement; thus, editing tools have been adopted rapidly in the research community. The deletion “Insertion” of DNA may be described, more precisely, as gene editing. Zinc-finger nuclease (ZFN) was the first technique used to cut DNA,later, ZFN+TALEN (transcription activator-like effectors nucleases) uses to target specific DNA, but the practical problem became an issue with this technology.A new advanced tool, “clustered regularly interspaced short palindromic repeats” (CRISPR)solved that problem, with the requirement of nuclease called CAS9 and a piece of ribonucleic acid (RNA). Crop production is facing many challenges such as climate change, salinity, drought, low grain quality, yield, post-harvest loss, low nutrient use efficiency, pest and diseases among others,hence,achieving sustainable and secure crop products became a complex network requiring a multi-faceted solution. Recognised means to address these issues is to develop tolerant and high yield varieties using conventional and modern breeding techniques through genetic engineering by introducing desirable traits in crops. Despite many attempts using different strategies for crop improvements,the achievements so far are quite modest. Gene editing tools can be used to enhance crop improvement by allowing the prologue of precise and predictable changes directly in an elite milieu and the CRISPR system is constructive for multiple traits and simultaneous modification.This review paper aims to discuss the most recent advance of gene editing technique and its application in crop improvement as well as challenges that hinder its practical relevance.

Full Text:



Ainley, WM., Sastry-Dent, L., Welter, ME., Murray, MG., Zeitler, B. and Amora, R. (2017). Trait stacking via targeted genome editing. Plant Biotechnol J, 11:1126–34.

Andersson, M., Turesson, H., Nicolia, A., Fält, A. S., Samuelsson, M. and Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports. 36(1):117-128.

Arias, R. S., Dang, P. M. and Sobolev, V. S. (2015). RNAi-mediated control of aflatoxins in peanut: method to analyze mycotoxin production and transgene expression in the peanut aspergillus pathosystem. Journal of Visualized Experiments. 106:53398.

Arora, L., and Narula, A. (2017). Gene Editing and Crop Improvement Using CRISPR-Cas9 System. Front Plant Sci, 8:1932.

Baltes, N. J., Hummel, A. W., Konecna, E., Cegan, R., Bruns, A. N., Bisaro, D. M. and Voytas, D. F. (2015). Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nature Plants, 1(10):15145-15168.

Brookhouser, N., Raman, S., Potts, C. and Brafman, D. (2017). May I Cut in? Gene editing approaches in human induced pluripotent stem cells. Cells 6(1):1-6.

Butler, N. M., Baltes, N. J., Voytas, D. F. and Douches, D. S. (2016). Geminivirus-mediated genome editing in potato (Solanum tuberosum l.) using sequence-specific nucleases. Frontiers in Plant Science, 7:1045.

Cantos, C., Francisco, P., Trijatmiko, KR., Slamet-Loedin, I. and Chadha-Mohanty, PK. (2014). Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair. Front Plant Sci. 5:302.

Carroll D. (2011). Genome engineering with zinc-finger nucleases. Genetics, 188(4):773–782.

Carroll D. (2016). Genome editing: progress and challenges for medical applications. Genome medicine, 8(1):120.

Čermák, T., Baltes, NJ., Čegan, R., Zhang, Y. and Voytas, DF. (2015). High-frequency, precise modification of the tomato genome. Genome Biol. 16:232.

Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C. and Pearlsman, M. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol, 17:1140–53.

Clasen, BM., Stoddard, TJ., Luo, S., Demorest, ZL., Li, J. and Cedrone, F. (2016). Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J. 14:169–76.

Chandran, M., Chu, Y., Maleki, S. J. and Ozias-Akins, P. (2015). Stability of transgene expression in reduced allergen peanut (Arachis hypogaea L.) across multiple generations and at different soil sulfur levels. Journal of Agricultural and Food Chemistry. 63:1788−1797.

de Toledo Thomazella, D. P., Brail, Q., Dahlbeck, D. and Staskawicz, B. J. (2016). CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. In bioRxiv. 1-11.

Demorest, ZL., Coffman, A., Baltes, NJ., Stoddard, TJ., Clasen, BM. and Luo, S. (2016). Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol. 16:225.

Fan, D., Liu, T., Li, C., Jiao, B., Li, S., Hou, Y. and Luo, K. (2015). Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation. Scientific Reports.5:12217.

Farboud, B. and Meyer, B. J. (2015). Dramatic enhancement of genome editing by CRISPR/cas9 through improved guide RNA design. Genetics. 199(4):959–971.

Foley, JA., Ramankutty, N., Brauman, KA., Cassidy, ES., Gerber, JS. and Johnston, M. (2011). Solutions for a cultivated planet. Nature. 478:337–342.

Gaj, T., Gersbach, C. A. and Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology. 31:397–405.

Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X. and Xia, Q. (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology. 879(1):99–110.

Georges, F. and Ray, H. (2017). Genome editing of crops: a renewed opportunity for food security. GM Crops Food, 8:1–12.

Govindaraj, M., Vetriventhan, M. and Srinivasan, M. (2015). Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int. 1–14.

Hill, A. J., McFaline-Figueroa, J. L., Starita, L. M., Gasperini, M. J., Matreyek, K. A., Packer, J. and Trapnell, C. (2018). On the design of CRISPR-based single-cell molecular screens. Nature Methods, 15:271–274.

Hsu, P. D., Lander, E. S. and Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6):1262–1278.

Haun, W., Coffman, A., Clasen, BM., Demorest, ZL., Lowy, A. and Ray, E. (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J. 12:934–40.

Hummel, AW., Chauhan, RD., Cermak, T., Mutka, AM., Vijayaraghavan, A. and Boyher, A. (2018). Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J. 16:1275–82.

Hunt, L., Bailey, Kj. and Gray, JE. (2010). The signalling peptide EPFL9 is a positive regulator of stomatal development. New Phyto, 186(3):609-614.

Iqbal, Z., Sattar, M. N. and Shafiq, M. (2016). CRISPR/Cas9: A Tool to circumscribe cotton leaf curl disease. Frontiers in Plant Science, 7:475.

Ji, X., Zhang, H., Zhang, Y., Wang, Y. and Gao, C. (2015). Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nature Plants, 1(10):15144.

Jia, H., Zhang, Y., Orbović, V., Xu, J., White, F. F., Jones, J. B. and Wang, N. (2017). Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal, 15:817–823.

Jiang, W. Z., Henry, I. M., Lynagh, P. G., Comai, L., Cahoon, E. B. and Weeks, D. P. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa , using CRISPR/Cas9 gene editing. Plant Biotechnology Journal, 15(5):648–657.

Jung, J. H. and Altpeter, F. (2016). TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Molecular Biology, 92(2):131–142.

Kannan, B., Jung, J. H., Moxley, G. W., Lee, S. M. and Altpeter, F. (2018). TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnology Journal, 16:856–866.

Komor, AC., Kim, YB., Packer, MS., Zuris, JA. and Liu, DR. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424.

Konermann, S., Lotfy, P., Brideau, Nj., Oki, J., Shokhirev, Mn. And Hsu, P. (2018). Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell, 173:665–676.

Langner, T., Kamoun, S. and Belhaj, K. (2018). CRISPR crops: Plant genome editing toward disease resistance. Annual Review of Phytopathology. 56:479-512.

Lawrenson, T., Shorinola, O., Stacey, N., Li, C., Østergaard, L., Patron, N., Uauy, C. and Harwood, W. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol, 1–13.

Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q. and Gao, C. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 8:14261.

Lusser, M., Parisi, C., Plan, D. and Rodriguez-Cerezo, E. (2012). Deployment of new biotechnologies in plant breeding. Nat Biotechnol, 30:231–239.

Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B., Slamet-Loedin, I., Čermák, T. and Chadha-Mohanty, P. (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnology Journal, 16(11):1918–1927.

Malnoy, M., Viola, R., Jung, MH., Koo, OJ., Kim, S., Kim, JS. and Nagamangala Kanchiswamy, C. (2016). DNA-Free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science, 7:1904.

Maresca, M., Lin, V. G., Guo, N. and Yang, Y. (2013). Obligate ligation-gated recombination (ObLiGaRe): Custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Research, 23(3):539–546.

Morineau, C., Bellec, Y., Tellier, F., Gissot, L., Kelemen, Z., Nogué, F. and Faure, J. D. (2017). Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnology Journal, 15(6):729–739.

Moose, SP., and Mumm, RH. (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant physiology, 147(3):969–977.

Mishra, R., and Zhao, K. (2018). Genome editing technologies and their applications in crop improvement. Plant Biotechnol Rep, 12(2):57–68.

Ng, I. S., Tan, S. I., Kao, P. H., Chang, Y. K. and Chang, J. S. (2017). Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnology Journal. 10:2-13.

Nicolia, A., Fält, A.-S., Hofvander, P., Andersson, M., Samuelsson, M. and Turesson, H. (2016). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 36(1):117–128.

Otto, S. P. and Whitton, J. (2002). Polyploid Incidence and Evolution. Annual Review of Genetics, 34:401-437.

Podevin, N., Davies, H. V., Hartung, F., Nogué, F. and Casacuberta, J. M. (2013). Site-directed nucleases: A paradigm shift in predictable, knowledge-based plant breeding. Trends in Biotechnology, 31(6):375-383.

Renny-Byfield, S. and Wendel, J. F. (2014). Doubling down on genomes: Polyploidy and crop plants. American Journal of Botany, 101(10):1711-1725.

Shan, Q., Zhang, Y., Chen, K., Zhang, K. and Gao, C. (2015). Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J, 13:791–800.

Schaart, J. G., van de Wiel, C. C. M., Lotz, L. A. P. and Smulders, M. J. M. (2016). Opportunities for products of new plant breeding techniques. Trends in Plant Science, 21(5): 438-449.

Shen, L., Hua, Y., Fu, Y., Li, J., Liu, Q., Jiao, X. and Wang, K. (2017). Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Science China Life Sciences, 60(5):506–515.

Shi, J., Gao, H., Wang, H., Lafitte, HR., Archibald, RL. and Yang, M. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J, 15:207–16.

Shimatani, Z., Kashojiya, S., Takayama, M., Terada, R., Arazoe, T., Ishii, H., Teramura, H., Yamamoto, T., Komatsu, H., Miura, K., Ezura, H., Nishida, K., Ariizumi, T. and Kondo, A. (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol, 35(5):441–443.

Shukla, VK., Doyon, Y., Miller, JC., DeKelver, RC., Moehle, EA. and Worden, SE. (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 459:437–41.

Song, G., Jia, M., Chen, K., Kong, X., Khattak, B., Xie, C. and Li, A. and Mao, L. (2016) CRISPR/Cas9: a powerful tool for crop genome editing. Crop J 4:75–82.

Soyk, S., Muller, NA., Park, SJ., Schmalenbach, I., Jiang, K. and Hayama, R. (2017). Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet, 49:162–8.

Sovová, T., Kerins, G., Demnerová, K. and Ovesná, J. (2017). Genome editing with engineered nucleases in economically important animals and plants: State of the art in the research pipeline. Current Issues in Molecular Biology, 21:41–62.

Steinert, J., Schiml, S. and Puchta, H. (2016). Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep, 7:1429–1438.

Tian, S., Jiang, L., Gao, Q., Zhang, J., Zong, M., Zhang, H. and Xu, Y. (2017). Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Reports, 36(3):399–406.

Tilman, D., Balzer, C., Hill, J. and Befort, BL. (2011). Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A. 108(50):20260-20264.

Tuhin, KG., Alvan, W., and Georg, H. (2017). Programmable Genome Editing Tools and their Regulation for Efficient Genome Engineering. Computational and Structural Biotech J, 15:146 – 160.

Upadhyay, S. K., Kumar, J., Alok, A. and Tuli, R. (2013). RNA-Guided genome editing for target gene mutations in Wheat. G3 Genes|Genomes|Genetics, 3(12): 2233–2238.

Waltz E. (2016). Gene-edited CRISPR mushroom escapes US regulation. Nature. 2016:532:293.

Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y. and Zhao, K. (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the erf transcription factor gene OsERF922. PLOS ONE, 11(4), e0154027.

Wang, S., Zhang, S., Wang, W., Xiong, X., Meng, F. and Cui, X. (2015). Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports, 34(9):1473–1476.

Wang, X., Tu, M., Wang, D., Liu, J., Li, Y., Li, Z. and Wang, X. (2018). CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnology Journal, 16: 844–855.

Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. and Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32:947–951.

Weeks, D. P. (2017). Gene editing in polyploid crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus. In D. P. Weeks and B. Yang (Eds.), Progress in Molecular Biology and Translational Science, 149:65–80.

Wei, N., Tennessen, J. A., Liston, A. and Ashman, T. L. (2017). Present-day sympatry belies the evolutionary origin of a high-order polyploid. New Phytologist, 216(1): 279-290.

Yin, X., Biswal, A.K., Dionora, J. et al. (2017). CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep, 36:745.

Zaidi, SS., Mahfouz, MM. and Mansoor, S. (2017) CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci, 22(7):550–553.

Zetsche, B., Gootenberg, JS., Abudayyeh, OO., Regev, A., Koonin, V., Eugene, A. and Zhang, A. (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163(3):759-71.

Zhang, B., Yang, X., Yang, C., Li, M. and Guo, Y. (2016). Exploiting the CRISPR/Cas9 System for targeted genome mutagenesis in Petunia. Scientific Reports, 6:20315.

Zhang, F., Thomson, J. G. and Puchta, H. (2015). Advances in new technology for targeted modification of plant genomes. In Advances in New Technology for Targeted Modification of Plant Genomes. Springer, New York, NY. 1st edit, 73-89.

Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S. and Zhou, G. (2018). Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnology Journal, 16(8):1415–1423.

Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K. and Gao, C. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 7:12617.

Zhang, Y., Massel, Karen., Godwin Ian D. and Gao Caixia (2018) Applications and potential of genome editing in crop improvement. Genom Bio, 19:210.

Zhou, J., Peng, Z., Long, J., Sosso, D., Liu, B., Eom, J.-S. and Yang, B. (2015). Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. The Plant Journal, 82(4):632–643.

Zhuang, W., Chen, H., Yang, M., Wang, J., Pandey, M. K., Zhang, C. and Varshney, R. K. (2019). The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 51(5):865–876.


  • There are currently no refbacks.