R. Abdulazeez, I. S. Ndams, D. M. Shehu, J. Auta


Drosophila melanogaster has been considered the best biological model for studies in areas such as genetics, behavior, evolution, development, molecular biology, ecology, and population biology. We studied the Genetic variability of Drosophila melanogaster sampled from Savanna zones of Nigeria using seven random microsatellites from previously characterized markers. The amplified fragments of 42 D. melanogaster from six populations across the three zones were analyzed and scored using the Image LabTM and GenAlex 6.05 software. The three zones revealed high gene diversity (He = 0.5) which could be due to the high gene flow observed within a zone, Polymorphism Information Content (PIC) of 0.693, indicating a good discrimination power of the selected markers. The populations also did not deviate from Hardy-Weinberg Equilibrium (0.157) as shown by the difference between observed and expected heterozygosities. The genetic variation observed as indicated by AMOVA was mostly variations within the populations (91%), 9% among zones. The negative fixation indices (FISof -1.000 and FIT of -0.675) indicated an excess of heterozygotes in the subpopulations and outbreeding in the total populations respectively.  The study, therefore, reveals that the used markers are highly polymorphic (PIC˃0.5), the populations of D. melanogaster are highly genetically diversified, outbreeding and highly sub-structured.

Full Text:



Acurio, A., Rafael, V. and Dangles, O. Biological Invasions in the Amazonian Tropical Rain Forest: The Case of Drosophilidae (Insect, Diptera) in Ecuador, South America. J. Biotropical. 1: 1-7. (2010). DOI: 10.1111/j-1744-7429-2010.

Andretic, R., Kim,Y.C., Jones, F.S., Han, K.A., and Greenspan,R.J. Drosophila D1 Dopamine Receptor Mediates Caffeine-Induced Arousal. Proceedings of the National Academy of Sciences, U.S.A. 105 (51): 20392- 20397. (2008).

Arora, R. and Bhatia, S. Genetic Structure of Muzzafarnagri Sheep Based on Microsatellite Analysis. J. Small Rum. Res. 54: 227-230. (2004).

Bader, J.M. Measuring Genetic Variability in Natural Populations by Allozyme Electrophoresis. Pg 25-42, In: Tested Studies for Laboratory Teachings, Vol. 19 (Karcher, S.J., ed.). Proceedings of the 19th Workshop Conference of the Association for Biology Laboratory Education (ABLE), 365 pp. (1998).

Capy, P., Gibert, P. and Boussy, I. (eds.) Preface. In : drosophila melanogaster, Drosophila simulans: so similar, so different. Contemporary Isuues in Genetic and Evolution. Kluwer Academic Publishers, The Nertherlands, 1-3. (2004).

Chang, G.B., Chang, H., Liu, X.P., Zhao, W.M., Ji, D.J., Mao,Y.J. and Shi,X.K. Genetic Diversity of Wild Quail in China Ascertained with Microsatellite DNA Markers. Asian- Australasian Journal of Animal Sciences, 20(12): 1783- 1790. (2007).

Daborn, P., Boundy, S., Yen, J., Pittendrigh, B. and Ffrench, R. DDT Resistance in Drosophila Correlates With Cyp6g1 Over-Expression and Confers Cross-Resistance to the Neonicotinoid Imidacloprid. J. Mol. Genet. Gen. 266, 556–563. (2001).

FGN. Atlas of Nigeria. Federal Government of Nigeria p.158. (2002).

Flybase. A Database of Drosophila Genes and Genomes. Genetics Society of America 2015. Retrieved October, 2015.

Harr, B. and Schlotterer, C. Long Microsatellite Alleles in Drosophila melanogaster Have a Downward Mutation Bias and Short Persistence Times, Which Cause Their Genome-Wide Under representation. J. Genetics. 155, 1213–1220. (2000).

Hartl, D.L., and Clark, A.G. Principles of Population Genetics. Massachusetts: Sinauer Associates, Inc. Publishers, Saunderland. 565 pg. (2007).

Irvin, S.D., Wetterstrand, K.A., Hutter, C.M. and Aquadro, C.F. Genetic Variation and Differenciation at Microsatellite Loci in Drosophila simulans: Evidence for Founder Effects in New World Populations. J. Genetics. 150: 777-790. (1998)

Kauer, M., Zangerl, B., Dieringer, D. and Schlotterer, C. Chromosomal Patterns of Microsatellite Variability Contrast Sharply in African and non-African populations of Drosophila melanogaster. J. Genetics. 160: 247–256. (2003).

Kirby, D. A., and Stephan,W. Multi-Locus Selection and the Structure of Variation at the White Gene of Drosophila melanogaster. J. Genetics.144: 635–645. (1996).

Machado, L.P., Manfrin, M.H, Silva- Junior, A. and Sene, F.M. Microsatellite Loci in the Cactophilic Species Drosophila antonietae. J. Mol. Ecol. Notes. 3: 159 – 161. (2003)

MacHugh, D. E., Shriver, M. D., Loftus, R. T., Cunningham, P. and Bradley, D. G. Microsatellite DNA Variation and the Evolution, Domestication and Phylogeography of Taurine and Zebu Cattle (Bos taurus and Bos indicus). J. Genetics. 146: 1071- 1075. (1997)

Mahmut, C. (Ed.). Analysis of Genetic Variation in Animals. Published by InTech, Turkey 372pp. (2012).

Markow, T.A and O’Grady, P.M. Drosophila: A Guide to Species Identification and Use. Published by Academic Press, London. 254pp. (2006).

Mateus, R.P. and Sene, F.M. Temporal and Spatial Allozyme Variation in the South American Cactophilic Drosophilaantonietae (Diptera : Drosophilidae). Biochemical Geneicst. 41: 219- 233. (2003).

Mcrae, B.H., Beier, P., Dewald, L.E., Huynh, L.Y, and Keim, P. Habitat Barriers Limit Gene Flow and Illuminate Historical Events in a Wide-Ranging Carnivore, the American puma. J. Mol. Ecol. 14: 1965-1977. (2005).

Meeta, R.A., McGeoch, and Tidon, R. Drosophilid Assemblages as a Bioindicator System of Human Disturbance in the Brazilian Savanna. J. Bio. Conservation. 17: 2899- 2916. (2008).

Meigen, J.W. Systematische Beschreibung der bekannten europäischen zweiflügeligen Insekten. (Volume 6) (PDF) (in German). Schulz-Wundermann. (1830).

Nichols, C.D., Rones, J., Prat, W. and Sanders-Bush, E.Hallucinogens and Drosophila: Linking Serotonin Receptor Activation to Behaviour. J. Neuroscience. 115(3): 979- 984. (2002).

Peakall, R. and Smouse, P. E. GenA1Ex 6.501: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research- an updated version. Canberra, Australia: Bioinformatics. (2012).

Penariol, L.V. and Madi-Ravazzi, L. Edge- interior Differences in the Species Richness and Abundance of Drosophilids in a Semi deciduous Forest Fragment. J. Springplus. 2: 114- 121. (2013).

Pool, J.E. and Aquadro, C.F. History and Structure of Sub-Saharan Populations of Drosophila melanogaster. J. Genetics. 174(2), 915 – 929. (2006).

Pranveer, S. and Bashisth, N.S. Population Genetics of Drosophila ananassae: Evidence for Population Sub-Structuring at the Level of Inversion Polymorphism in Indian Natural Populations. International Journal of Biology. 2 (1), 2-7. (2010).

Ross, C.L. and Markow, T.A. Microsatellite Variations Among Diverging Populations of Drosophila mojavensis. J. Evo. Bio. 19 (5), 1691- 1700. (2006)

Schlotterer, C. The Evolution of Molecular Markers-Just a Matter of Fashion? J. Nat. Rev. Gen. 5, 63–69. (2004).

Schlotterer, C., Neumeier, H., Sousa, C. and Nolte,V. Highly Structured Asian Drosophila melanogaster Populations: A New Tool for Hitchhiking Mapping? J. GSA. 172(1): 287-292. (2005). DOI: 10.1534/genetics.105.045831.

Schug, M. D., Hutter, C. M., Wetterstrand, K. A. and Gaudette, M. S. The Mutation Rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. J. Mol. Bio. Evo. 15: 1751–1760. (1998).

Schug, M.D., Smith, S.G., Tozier- Pearce, A. and McEvey, S.F. The Genetic Structure of Drosophila ananassae Populations From Asia, Australia and Samoa. J. Genetics. 175(3), 1429–1440. (2007) doi: 10.1534/genetics.106.066613

Singh P. and Singh B. N. Population genetics of Drosophila ananassae: evidence for population sub-structuring at the level of inversion polymorphism in Indian natural populations. Int. J. Biol. (Canada) 2, 19–28 (2010).

Sofija, B.P., and Vladimir, D.K. Seasonal and Spatial Distribution of Two Siblings Species, Drosophila melanogaster and Drosophila simulans (Diptera; Drosophilidae) in Belgrade, Serbia. Acta Zoologica Bulgarica, 66 (2): 173-178. (2014).

Srinath, B.S and Shivanna, N. Seasonal Variation In Natural Populations of Drosophila in Dharwad, India. Journal of Ent. and Zoology Studies. 2 (4): 35-41. (2014).

Stephan, W., Xing, L., Kirby, D.A., and Braverman, J.M. A Test of Background Selection Hypothesis Based on Nucleotide Data from Drosophila ananassae. Proceedings of the NationalAcademy of Sciences, 95: 5649-5654. (1998).

Sushila, S. and Jaya, P.Y. Genetic Variation in Natural Populations of Salvadora oleoides: An Important Medicinal Plant that Needs Conservation. Asian Journal of Plant Science and Research. 3 (5):20- 27. (2013).

Turlure, C., Vandewoestijne, S. and Baguette, M. Conservation Genetics of a Threatened Butterfly: Comparison of Allozymes, RAPDs and Microsatellites. J. BMC Genetics. 15:114-125. (2014).

Umar, A.U. Genetic Evaluation of Helmeted Guinea Fowl (Numida meleagris galeata Pallas) in Nigeria Using Microsatellite Marker. M.Sc. Thesis, Department of Animal Sciences, Ahmadu Bello University. 76pp. (2016).

Walker, C.W., Harveson, L.A., Pittman, M.T., Tewes, M.E., and Honeycutt, R.L. Microsatellite Variation in Two Populations of Mountain Lions (Puma concolor) in Texas. J. Southwest Naturalist. 45: 196-203. (2000).

Wolf, F.W. and Herbelein, U. Invertebrate Models of Drug Abuse. J. Neurobiology. 54 (1), 161- 178. (2003).


  • There are currently no refbacks.